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Mathematical Aspects of
Nonlinear Dynamical Systems

H.W. Broer, F. Takens

1. DESCRIPTION OF THE FIELD OF RESEARCH

Dynamical systems are systems that change as time evolves. In the present,
mathematical context this means: mathematical models for such systems.
These models consist of two main ingredients. The first is a state ‘space’:
a set whose elements are the possible states of the system. The second
ingredient 1s an evolution law, which describes how the state of the system
evolves as a function of time, once an initial state is known. We usually
assume that whenever the state of a system is known at a certain time ¢,
the evolution law completely determines the state at all later times. This
defines a deterministic system, as opposed to a stochastic system where the
evolution i1s in terms of probability. Also we assume that we cannot influence
the dynamics, except by choosing the initial state. Dynamical systems that
do admit such interventions are the subject of systems— and control theory.

1.1. Linearity
The notion of linearity for dynamical systems usually refers to some equilib-
rium state, such that the only states of interest are small perturbations of
this equilibrium. As an example think of water in a pond with a completely
Hat surface as its equilibrium, where the perturbations are small surface
waves.

In such a context the system 1s called linear if a superposition principle
holds in the following sense: for any two perturbations compatible with the
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law of evolution, the ‘sum’ is also compatible with this law. (In the example
of a water surface this holds to a good approximation: two different waves
can cross one another without being visibly disturbed.) In ‘real’ systems
this linearity often holds only in first approximation.

1.2. Nonlinearity

Nonlinear systems mostly are far from equilibrium. Usually it is hard to
obtain general information about the set of all possible evolutions of such
systems. There are some exceptions: systems which are nonlinear, but still
can be completely ‘solved’. The most famous example of this is the solar
system without interaction between the planets (leading to the description
of the motion as given by the Kepler laws). Systems that can be analysed
completely i this way are called integrable. Usually the dynamical be-
haviour of such integrable systems is not representative for that of general
nonlinear systems.

In this respect integrable systems, as well as linear systems, are excep-
tional. However, both cases also are important for the study of the general
case. Indeed, many aspects of nonlinear dynamical systems can be studied
In situations obtained from linear or integrable systems by a small pertur-
bation. An example of this is the solar system with interaction between the
planets, where the interaction is considered small.

An early example concerning this was the work of H. Poincaré, leading
to his monumental paper in the Acta Mathematica (1890) which was a first
and very influential contribution to what is now called the geometric theory
of dynamical systems.

1.8. Degrees of freedom

Apart from the distinction between linear and nonlinear or integrable and
non-integrable, there is another distinction we want to point out. On the
one hand there are systems with only a finite number of degrees of freedom,
1.e., systems, the state of which is specified by a finite set of numbers. Here
think of the planetary system, mechanical systems consisting only of a finite
number of rigid bodies and springs, electrical circuits, etc. On the other
hand there are systems with infinitely many degrees of freedom, usually
systems where the specification of a state needs one or more functions. An
example is given by the above water surface where the specification of the
height of the surface requires a function.

It turns out that systems with infinitely many degrees of freedom in their
state space often exhibit some finite dimensional structure to which, due
to the law of evolution, all states converge. In such cases the dynamics
essentially 1s that of a system of a finite number of degrees of freedom.
In cases where there is no such reduction new dynamical phenomena can
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appear. 'T'he emphasis in the programime under description mainly is on
systems with finitely many degrees of freedom.

2. METHODS OF RESEARCH

Investigating nonlinear systems omne tries to solve two types of questions.
First, how to obtain information about the dynamical properties of a system,
the evolution laws of which are given in terms of explicit equations. Second,
what types of dynamic behaviour can be expected in typical (i.e., non-
pathological) deterministic systems. Most methods, mentioned below, are
used to answer both types of questions.

2.1. Analytic methods

Often it is not possible to determine analytically (i.e., without a computer)
the future states of a dynamical system given its initial state. Nevertheless
there are many important cases where good approximations exist by systems
that one can solve in this respect. These approximating systems usually are
either linear or integrable. For many years the positions of the planets
have been predicted by such methods. It is remarkable how Poincaré moti-
vated this research: “The final goal of celestial mechanics is to resolve the
ogreat problem of determining if Newton’s law alone explains all astronomical
phenomena. The only means of deciding is to make the most precise ob-
servations and then compare them to the calculated results.” Indeed, these
methods of approximation gave the required accuracy: not many years after
he wrote this it was found that Mercury did not obey this ‘law’ — which
was one of the observations leading to the general theory of relativity.

2.2. Geometrical methods: far from linear or integrable

These methods rely on abstract existence results often in the form of fixed
point theorems. For example think of the theory of invariant manifolds and
persistence for dynamical systems with hyperbolic subsets.

2.8. Analysis and interpretation of physical or numerical examples

A driving force in the development of the theory of dynamical systems was
the desire to give a mathematical explanation of concrete examples. In
recent times a number of such examples were given in the form of mathe-
matical equations. We here mention the examples of Lorenz (1963), Hénon-
Heiles (1964), Hénon (1976), Rossler (1976), etc., which were solved only
numerically. See figure 1. These numerical solutions showed thoroughly
unexpected patterns, requiring completely new theoretical insights for their
explanation. In this context we also mention experiments in mechanical
systems with resonance, e.g., Moon and Holmes (1979), the dynamics of
which has much in common with that of the above Hénon system.
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Figure 1. The conservative example of Hénon-Heiles 1964 (left) and the dissipative
example of Hénon 1976 (right).

The earlier, but fundamental, work of B. van der Pol at the Philips Na-
tuurkundig Laboratorium (1920 and later) was aimed at the understand-
ing ot the dynamics of electrical circuits with nonlinear elements (vacuum
tubes).

2.4. Analysis of geometric examples

T'here have been a number of highly important examples of dynamical sys-
tems, not given by explicit equations, but by a geometric description. From
this one could prove mathematically the possibility of certain types of dy-
namic behaviour. In particular, the horseshoe map (Smale 1965) and related

Figure 2. The dissipative example of Lorenz 1963 (left) and a modification, e.g., Palis
and Takens 1993 (right).
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examples showed that a deterministic system could simulate random be-

haviour like coin tossing. This horseshoe example isolates the essentials of

the homoclinic ‘webs’ to be discussed below in 0.3.2.

In this context we consider the existence of so-called chaotic attractors in
systems described by differential equations. Interestingly, this existence has
not yet been proven mathematically for any system given in terms of explicit
equations (without parameters). Nonetheless the geometric examples prove
that there must be differential equations, say of polynomial form. which do
exhibit this chaotic behaviour. See figure 2.

A similar remark holds for conservative systems used for modelling the
dynamics in the world of frictionless mechanics. Here the chaos-question is
whether regions of positive measure in the state space are densely filled by
single orbits, another fact which is strongly suggested by computer simula-
tions. See figure 1. The mathematical affirmation of this, even for simple
systems, 1s open for at least 30 years and there seems to be no hope in the
near future.

These geometric examples are typically related to the second class of ques-
tions mentioned before: What kind of dynamic behaviour can one expect
in typical deterministic dynamical systems?

3. NEW CONCEPTS

T'he investigations of nonlinear dynamical systems opened our eyes to new
notions, relevant to the description of the different types of dynamic be-
haviour. We mention the most important ones.

3.1. Chaos

With chaos, or chaotic dynamics, a type of deterministic dynamics is meant
which looks like random. This phenomenon is displayed by systems where
the evolution, following a typical initial state, is very sensitive to perturba-
tions of this state. In fact, usually such perturbations grow exponentially.
T'he behaviour of these systems can only be predicted over a short period:
atter this the uncertainty concerning the initial state, possibly combined
with the round-off errors in the calculations, make further prediction im-
possible. A well-known example is the impossibility to predict the weather
over a period longer than typically a couple of weeks.

3.2. Fractals
Fractals are self-similar objects. This means that any magnification of a
fractal shows the same large-scale structures as present originally. Such
structures can show up as attracting sets, i.e., sets to which typical evolu-
tions are attracted in the case of chaos. See figure 3.

T'his and related occurrences of fractals in dynamical systems have drawn
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Figure 3. Magnifications in the Hénon attractor.

a lot of attention, not in the least because of the beautiful pictures that can
be provided in this way. Especially the group of H. Peitgen (University of
Bremen) has been very successful in this respect.

Still it is only fair to say that the relation between chaotic dynamics and
fractals is rather complicated. In particular the often heard suggestion that
every chaotic attractor also is fractal, is not true. Of course, it is neither
true that every fractal 1s a chaotic attractor ...

Figure 4. A homoclinic web.

One way in which fractal structures
appear 1 dynamical systems is by the
‘'web’ of stable and unstable separatri-
ces 1n the presence of a homoclinic in-
tersection. Let us briefly explain this.
T'he stable separatrix of a state p, or
pomt 1 the state space, consists of
all pomts approaching p as time goes
on. Reversing time gives the analo-
gous notion of the unstable separa-
trix. Intersections of two such sepa-
ratrices belonging to the same point p
1s a homoclinic intersection. In figure
4 we show such a web for a dynamical
system with two degrees of freedon..
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Figure 5. A sequence of bifurcations leading to complicated dynamics.

These webs (or parts of them) are strongly related to chaos in both the
dissipative and the conservative context, but only in exceptional cases pre-
cise mathematical results on this have been obtained, ci. Benedicks and
Carleson [4]|, and Palis and Takens [19].

3.8. Bifurcations

A bifurcation is a transition between different dynamical regimes. For ex-
ample think of a dynamical system, the dynamics of which can be changed
by tuning one or more dials. Although this may somewhat look like ‘input
variables’ in control theory, the situation 1s quite different: the dials are to
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be fixed when the evolution law is working. It turns out that the occur-
rence of certain bifurcations implies the presence of other bifurcations. This
imposes a complicated hicrarchy on the world of bifurcations.

Instances of this include infinite bifurcation sequences leading from sta-
tionary to chaotic dynamics. One example is the Feigenbaum sequence,
where an infinite repetition of period doublings occurs. This and other ex-
amples show a strong persistence: if one perturbs the evolution law a bit,
the whole infinite succession of bifurcations remains qualitatively the same.
See figure 5.

4. A HISTORY
In the above exposition we already mentioned some historical aspects. Here
we give a somewhat more systematic description.

4.1. From Newton to the 19th century

Through the Newtonian laws (Principia Mathematica Philosophise Natu-
ralis, 1687) it became possible to treat many problems of the dyvnamics of
mechanical systems in a mathematical way. The corresponding analysis was

as lunar and planetary motion). These approximations were only known to
be reliable, as a description of the motion, over a restricted time interval.

4.2. The stability of the solar system

The stability of the solar system has been considered in many different
forms. The main point is that information is asked concerning the dynamics
of the (Newtonian) solar system, valid for the whole future, so over an
infinite interval of time.

The conservation laws for the energy and the (angular) momentum give
some information about the infinite future. But even taking these con-
servation laws into account, the following still is conceivable. Due to the
interaction of planets one of these, say the earth, systematically gains en-
ergy (which the others are losing), and finally escapes from the solar system.
In this sense the solar system could be unstable. This stability problem was
posed by Welerstrafl, and became part of the problems in 1885 set for a
prize by king Oscar of Sweden. Poincaré won this prize, not by establishing
stability, but because of the new insights he revealed, showing the complex-
1ty of the problem. This was the content of the paper in the Acta of 1890
mentioned before.

T'his work of Poincaré can be considered the starting point of what is now
called the geometric theory of dynamical systems.
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4.3. The theory of nonlinear oscillations

In the beginning of this century, due to the growing electronic technology,
there was much interest in nonlinear electronic circuits and their oscillations.
This was the subject of the fundamental work of Van der Pol (around 1920),
which was later continued by Cartwright, Littlewood and Levinson (around
1950). These developments inspired Smale and his co-workers when they
extended the geometric approach of Poincaré (around 1965). This extension
made 1t possible to formulate and partly solve the basic questions behind
this, that are nowadays associated to the chaotic dynamics in nonlinear
oscillations.

4.4. Theory of bifurcations
The theory of bifurcations was also initiated by Poincaré. Here one inves-
tigates how the qualitative properties of a dynamical system can change as
a function of one or more parameters. Later contributions are due to An-
dronov and co-workers around 1940, who started a systematic study of the
hierarchy (based on the idea of co-dimension) of bifurcations of mechanical
systems, and Hopf (1942) who investigated the transition from stationary to
oscillatory behaviour inspired by questions about turbulence in the motion
of fluids. Later on, R. Thom made this hierarchy of co-dimmensions the basis
of his general ideas on morphology and catastrophy theory [23].
Afterwards, when the importance of chaotic dynamics was discovered, one
of the main questions in bifurcation theory became how transitions to chaos
take place in a persistent (or typical) way. The most well-known scenario’s
are the transition via quasi-periodic motion by Ruelle and Takens [20] and
the transition via period doubling due to Feigenbaum [9]. See figure 5.

4.5. KAM-theory

KAM-theory, around 1960 initiated by Kolmogorov, Arnol’d and Moser,
deals with the persistent occurrence ot quasi-periodicity in dynamical sys-
tems. This is a kind of periodicity with more than one frequency involved.
Its first interest was in the conservative systems modelling classical mechan-
1cs. The context of KAM-theory again is perturbation theory: it deals with
nearly integrable systems such as the solar system, see [2,3].

Concerning the stability of the solar system, this conservative KAM-
theory guarantees that positive (Liouville) measure in the state-space 1is
swept out by orderly, quasi-periodic orbits. For the stability problem this
means that there 1s positive probability that the ‘actual’ evolution of the
solar system is quasi-periodic, which certainly would imply stability.

In general, however, it 1s expected that both the quasi-periodic and the
chaotic regime have positive measure. See figure 1. This coexistence of order
and chaos makes it hard to infer stability from these qualitative considera-
tions for an explicit initial state and King Oscar’s question 1s still open .. ..

187



188

H.WW. BROER F. TAKENS

A related point of interest is that for nearly integrable systems with finitely
many degrees of freedom ergodicity does not hold. Ergodicity roughly means
that all evolutions in the long run come everywhere in the state space.
Since the quasi-periodic orbits yield measure theoretically nontrivial invari-
ant sets, ergodicity does not hold for the systems under consideration. In the
case of an infinite number of degrees of freedom often an Fregodic Hypoth-
esis 1s postulated and it is an unsolved problem to understand the limiting
processes involved.

Later on, KAM-theory also became important for ‘dissipative’ systems de-
pending on external parameters. Here again generally coexistence of quasi-
periodic order and chaos holds. As stated earlier, this means that (quasi-
periodicity can indeed be a transient stage in a sequence of bifurcations from
order to chaos. The behaviour of quasi-periodic attractors under variation of
parameters was studied by, e.g., Broer, Huitema, Takens and Braaksma 5].

0. MAIN THEMES OF THE PROGRAMME

We now turn to the NWO-SMC programme ‘Mathematical aspects of non-
linear dynamical systems’, which was carried out the last couple of years.
T'he research projects involved here easily can be traced back to the history
sketched above.

5.1. Resonance phenomena

Let a dynamical system be given, mechanical or otherwise, containing sev-
eral oscillatory parts that are somehow linked. Then the term ‘resonance’
refers to an exceptional, though often strong, interaction between two or
more of such parts. The simplest interaction involves the equality of fre-
quencies of two oscillatory parts, but also other simiple arithmetic relations
between frequencies can occur. This is a classical setting for bifurcation the-
ory: small changes of parameters may tune away from resonance, bringing
about drastic changes of the dynamics. The programme contains several
activities in this area. This research is relevant for technological applica-
tions.

Parametric resonance (Broer, Hoveijn (postdoc), Levi (guest from RPI,
Troy NY)). A model problem is the following. Consider a pendulum., its
point of suspension oscillating vertically. Suppose that we can change the
corresponding period at will, so that we may consider it as a parameter.
Here a strong form of so-called parametric resonance occurs whenever the
period is near the period or near half the period of the pendulum itself. It
turns out that for certain values of the system parameters the equilibrium
of the pendulum becomes unstable!
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Figure 6. Pockets in the stability diagram of Square Hill's Equation.

One problem is how the dynamical possibilities are organized in parame-
ter space (which here happens to be a plane). Often the regions of instability
form tongues, sometimes exhibiting so-called instability-pockets, see figure
6. This is a complicated matter that has been the subject of research since
the 1920’s. The research of Broer and Levi |6] has contributed to the geo-
metric insight in this.

A variation of this problem occurs when two of such pendulums are cou-
pled by a weak string. If the resonance is such that the sum of the natural
frequencies of the pendulums equals the frequency of the forcing, the system
is stable only for parameter values in a narrow tongue. The geometric un-
derstanding of this phenomenon was enhanced by Hoveijn and Ruijgrok [14].

The fattened Arnol’d family (Broer, Stmd & Tatjer (quests from the Univer-
sity of Barcelona), Viana (guest from IMPA, Rio de Janeiro)). V.I. Arnol’d
is one of the leading members of the dynamical systems community. For a
better understanding of — among other things — resonant dynamics, he
has introduced a model system operating on a circle, which by now 1s well-
understood. It seems that extensions of this model to the plane may play a
central role in bifurcations to chaos, related to homoclinic points. As more
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Figure 7. Complexity in the stability diagram (left) and a global Viana-attractor in the
fattened Arnol'd family (right).

often, this ‘fattened’ model itself also turns out to contain a lot of chaos.
These phenomena are strongly related to resonance, in particular where the
resonance 1s about to disappear and where several resonance areas start to
interact. Viana did theoretical work on this when visiting Groningen. Simé
and Tatjer, together with Broer contributed to the understanding of this
In a computer assisted way. Among other things, phenomena predicted by
Viana’s theory were found, see figure 7. Compare [24].

Generic 1:4 resonance (Broer, Krauskopf (Ph.D.-student), Takens). This
1s a study of all possible dynamical consequences of a loss of stability, as-
sociated to a frequency ratio of 1 to 4 (or 3 to 4, which can be reduced
to the same problem). A corresponding study was carried out for all other
integer ratio’s in the 1970’s by Arnol’d, Bogdanov, Carr, Khorozov and
Takens, but the present case, which is much more complicated than the
others, 1s still not completely solved. There is a conjecture by Arnol’d [3]
which, when true, gives a complete solution of this case. In the present
project a combination of analytical and numerical methods were used to
study and visualize the consequences of the conjecture in terms of the bi-
furcation structure in a three-dimensional parameter space; see figures 8
and 9. In combination with the study of a certain singularity that acts as
an organizing centre, this is convincing evidence in favour of the Arnol’d
conjecture; see Krauskopf [15,16].

Resonance in adiabatically forced Hamiltonian systems (Huveneers (Ph.D.-
student), Verhulst). Here we have a resonance problem in the context of
conservative or frictionless mechanics with two parameters, one detuning the
resonance and one related with the average energy. It turns out that here one
can successfully transform to the quantummechanical formalism. Although
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Figure 9. A sequence of phase portraits near 1:4 resonance.

this change of formalism changes the context from nonlinear and finite-
dimensional to both linear and infinite-dimensional, the bifurcations can
still be interpreted. The bifurcations are analysed in terms of the invariant
subspaces of the associated infinite-dimensional Hilbert space.

5.2. Symmetry

Many natural systems exhibit some form of symmetry, which then deter-
mines the bifurcations, i.e., the drastic changes in the behaviour one can
typically expect. Another reason for studying symmetric systems is that
they are often integrable and hence can be used as a first step to study
(approximate) more complicated systems. This holds in particular for the
symmetric systems arising from truncation of higher order terms, in combi-
nation with normal form procedures.
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Coupled Josephson junctions (Van Gils, Krupa, Tcehistiakov (Ph.D.-student)).
T'his project is concerned with the dyvnamical properties of a number of iden-
tical Josephson junctions, each two of them coupled in the same way. A
Josephson junction is a gadget from the theory of superconductivity, mod-
elled by a pendulum with oscillating point of suspension. This present
system 18 Invariant under any permutation of the Josephson junctions. The
main question, which is related with the applications of these systems, is
under which conditions the different junctions operate in a synchronous
way. L'he Investigations, which centre around a homoclinic bifurcation, are
carried out both by analytical and numerical means.

L 193

Figure 10. Chaos in the skew Hopf bifurcation.
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Skew Hopf bifurcation (Broer, Takens., Wagener (Ph.D.-student)). This
project started with the imvestigation of a transition to chaos in the pres-
cence of symmetry, which showed the possibility of mixed spectra for chaotic
systems, see Broer and Takens [7]. Mixed spectra were observed in exper-
iments, but no persistent mathematical example was known. The present
mvestigations are concerned with the question what happens to this tran-
sition 1f the symmetry gets (slightly) broken. This needs a generalization
of the KAM-theory of quasi-periodic motions. On the other hand, com-
puter simulations indicate that new types of attractors are formed when
the symmetry is broken. See figure 10.

Resonance and Symmetry (Hoveiyyn (postdoc)). Resonant systems can be
considered as small perturbations of symmietric systems in the sense that
thelr Taylor series have a formal symmetry, which is inherited by trunca-
tions. Therefore, in the setting of resonance it is quite natural to consider
symmetric systems.

The presence of a symmetry group makes it possible to lower the dimen-
sion of the system by considering the dynamics on the orbit space of the
group. For Hamiltonian systems one often can even lower the number of
degrees of freedom. This approach raises some interesting problems. In
general orbit spaces will have singularities. The first problem is to charac-
terize these just from the symmetry group at hand. In many cases these
singularities turn out to be rational, which facilitates this task. The second
problem is to determine the global structure of the orbit space. This ques-
tion 1s harder, involving real algebraic geometry. Apart from determining
the nature of the orbit space there i1s the question of defining a dynamical
systemn on a phase space with singularities.

For Hamiltonilan systems many results have been obtained by Lerman &
Sjamaar [17] and Arms et al. [1] where the symmetry group is a Lie group
with linear action. More detailed results for particular resonant systems
with two degrees of freedom were already found by Churchill et al. [8].
For these systems the singular reduction method is very powerful because
here there are no global problems and the singularities are simple. Singular
reduction for resonant Hamiltonian systems with more than two degrees of
freedom is a subject of further research, for partial results see Hoveijn [13].

tures, such as a symplectic structure and a symmetry group. Research in-
spired by the coupled pendulums example led to the characterisation of
infinitesimally reversible symplectic matrices.

One-dimensional dynamics (Van Strien, Kozlovsky (Ph.D.-student)). The
most complete, and profound, mathematical results concern dynamical sys-
tems with only one degree of freedom. Although this is a rather restricted
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clags it has applications in biology and in fuid dynamics. The dynamics
of these one-dimensional systems can be extremely complicated, but still is
mathematically well understood. See De Melo and Van Strien [18]. The aim
of this project is to try and extend the one-dimensional results to higher
dimensions. In the special case of the Hénon map this already turned out to
be possible, compare the fundamental work of Benedicks and Carleson [4].

T'his approach is strongly related to the analysis of the fattened Arnol’d
family mentioned above.

5.3. Numerical tools and visualization
There 1s now software to analyse bifurcations of explicitely given systems
(DS tool, AUTO and LOCBIF), but much needs to be done to integrate the
possibilities of these programs, and to combine them with the normal form
algorithms. The dynamical systems laboratory (DSL) at CWI has been
active 1 this direction and has supported applications of this software,
e.g., for the 1:4 resonance mentioned earlier, but also for investigations in
population dynamics. The objects visualized are usually of dimension two,
or at most three.

Other problems arise when studying higher-dimensional objects, like in-
variant manifolds. Both the calculation of these objects and their visualiza-
tion require new methods.

Development of software and applications to population dynamics at DSL
(Sanders, Kuznetsov, Levitin (NWO-visitor), Lisser, Kirkilonis, Hantke
(Postgraduate)). One of the main projects in this group is the development
of a new program CONTENT combining the advantages of the different
now existing programs. There i1s an intensive cooperation with authors of
previous programs, like Doedel (author of AUTO) and Kuznetsov (author of
LOCBIF). Another, related theme is the computation of normal forms with
Mathematica-based software. Partially these activities were also supported
by the NWO priority programme ‘Nonlinear Systems’.

From the applications outside mathematics we mention the bifurcation
analysis of structured populations.

Computation and vizualization of invariant manifolds (Broer, Osinga (Ph.D.
student), Vegter). The problem is to develop programs that numerically
compute invariant manifolds, using (normal) hyperbolicity. A first contri-
bution to this, by Homburg, Osinga and Vegter [12|, computes the stable
and unstable manifolds of a stationary point. The corresponding algorithm
1s based on the existence prootfs of both Perron and Hadamard.

Research 1s in progress concerning a general normally hyperbolic case,
where variations of the graph transform are employed. The corresponding
algorithm 1s very suitable for continuation purposes and fills a gap in the
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existing software. As an
example of an invariant 2-
torus 1 a 3-dimensional dif-
feomorphism, produced by
this method, see figure 11.

Since the algorithms de-
scribed here are based on
a theoretical existence proof,
analytic error bounds can be
obtained while the methods
can be used to provide com-
puter assisted proofs of all
Figure 11. Invariant 2-torus for a fattening kinds ot dynamical features.
of the Thom-automorphism.

5H.4. KAM-theory

Further development of KAM-theory turns out to be of general interest
for the research involved. Within the scope of the present programme we
mention the above project of the ‘skew Hopf bifurcation’, where KAM-
theory has to be extended to investigate the persistence and bifurcation of
certain quasi-periodic attractors. Also similar quasi-periodic bifurcations in
conservative systems have to be studied as they occur, for instance, in the
rigid body dynamics, see below.

One other project financed by FOM/SMC (via the National Mathematical
Physics Community) deals with the Ergodicity Problem mentioned before
(Broer, Van Enter, de Jong (Ph.D.-student), Takens, Winnink). Indeed,
it considers a concrete infinite-dimensional lattice system as a limit of fi-
nite degree of freedom systems, investigating the fate of the quasi-periodic
motions in the limiting process.

Again 1n the context of conservative systems there is a project, financed
by Groningen University, dealing with two and three quasi-periodic motions
of a rigid body which is a perturbation of the Euler top. (Broer, Cushman
(Utrecht University), HanfBmann (Ph.D.-student)). One tool for this prob-
lem 1s normal form theory, yielding an approximate system with a 2-torus
symmetry. The reduced (slow) system in two-dimensions can be studied in
its own right by singularity theory. This leads to quasi-periodic motions
with two and three frequencies (including some bifurcations) in the inte-
grable approximation. After this a KAM perturbation theory has to be
carried out. See Hanfimann [10,11].

Finally we mention the manuscript of a book by Broer, Huitema (PTT-
research) and Sevryuk (guest from Russian Academy of Sciences, Moscow).
This 1s a survey of KAM-theory in classes of systems determined by the
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preservation of a given structure. Examples are given by the classes of con-
servative or dissipative systemns mentioned before. Another example con-
sists of reversible systems related to a given involution. The involution takes
evolutions to evolutions, reversing the time-parametrization. Especially the
minimal amount of parameters needed for persistence of quasi-periodic mo-
tions is of interest.

5.9. Methods and applications of nonlinear time series analysis

This area, which was not included in the present programme, but in the
NWO priority programme ‘Nonlinear Systems’, is based on concepts from
the theory of nonlinear dynamical systems. The idea is the following:
chaotic systems behave like random systems, but is it possible to distin-
guish the two just by observing the dynamics? The answer turns out to
be positive, but it requires new methods of time series analysis. Com-
pare Takens [21,22]. These methods are also relevant for systems that are
not completely deterministic. At this moment there is a project analysing
the statistical aspects of these new methods (Borovkova (Ph.D.-student),
Dehling, Takens) and there are two experimental groups applying these
methods: the group of Van den Bleek et al. at Delft University of Tech-
nology applying this to the problems of design and operation of fluid bed
reactors, and the group of De Goede et. al. at Leiden University applying
this to physiological time series (EEG and ECG).

REFERENCES
1. J.M. ArMs, R.H. CusHMAN, M.J. GorAy (1991). A universal re-
duction procedure for Hamiltonian group actions. T. RATIU (ed.).
The Geometry of Hamziltonian Systerns, MRSI Workshop proceedings,
Springer-Verlag.
V.I. ARNOL'D (1983). Mathematical Aspects of Classical Mechanics,
Springer-Verlag. .
3. V.I. ARNOL’'D (1983). Geometrical Methods in the Theory of Ordinary 197
Dafferential Equations, Springer-Verlag.
4. M. BENEDICKS, L. CARLESON (1991). The dynamics of the Hénon
map. Annals of Mathematics 133(1).

5. H.W. BRrROER, G.B. Huitema, F. TAKENS, B.L.J. BRAAKSMA

(1990). Unfoldings and bifurcations of quasi-periodic tori. Mem. A.M.S.
83(421).

6. H.W. BROER, M. LEVI (1995). Geometrical aspects of stability theory
for Hill’s equations. Arch. Rat. Mech. An. 151.

7. H.W. BROER, F. TAKENS (1993). Mixed spectra and rotational sym-
metry. Arch. Rat. Mech. An. 124.

NO



198

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

VV. BROER, F. TAKENS

R.C. CHURCHILL, M. KuMMER, D.L. Rop (1983). On averaging, re-
duction and symmetry in Hamiltonian svstems. J. Diff. Eqgs. 49.

M.J. FEIGENBAUM (1978). Quantitative universality for a class of non-
linear transformations. J. Stat. Phys. 19.

H. HANBMANN (1995). Normal forms for perturbations of the Euler
Top. W. LANGFORD (ed). Normal Forms and Homoclinic Bifurcations,
Fields Institute Comununications, American Mathematical Society.

H. HANBMANN (1995). Quasi-Periodic Motion of a Rigid Body—A
Case Study on Perturbations of Superintegrable Systems, Ph.D. The-
sis, Groniningen University, in preparation.

A.J. HOMBURG, H. M. OsINGA, G. VEGTER (1995). On the computa-
tion of invariant manifolds of fixed points. Z.A.M.P. /6.

I. HOVEILIN (1992). Aspects of Resonance in Dynamical Systems, Ph.D.
‘Thesis, Utrecht University.

I. HOVEIIN, M. RUIJGROK (1995). On the stability of parametrically
driven coupled oscillators in sumresonance. Z.A.M.P. /6.

B. KRAUSKOPF (1994). Bifurcation sequences at the 1:4 resonance: an
inventory. Nonlinearity 7.

B. KRAUSKOPF (1995). On the 1:4 Resonance Problem, Analysis of the
Bifurcation Set, Ph.D. Thesis, Groningen University.

E. LERMAN, R. SJAMAAR (1991). Stratified symplectic spaces and re-
duction. Annals of Mathematics 154(2).

W.C. DE MELO, S.J. VAN STRIEN (1993). One Dimensional Dynamics,
Springer-Verlag.

J. PALIS, F. TAKENS (1993). Hyperbolicity and Sensitive Chaotic Dy-
nameucs at Homoclinic Bifurcations, Cambridge Studies in Advanced
Mathematics, 35.

D. RUELLE, F. TAKENS (1971). On the nature of turbulence. Comm.
Math. Phys. 20 and 285.

F. TAKENS (1981). Detecting strange attractors in turbulence. Dynami-
cal Systems and Turbulence, Warwick 1980, LNM 898, Springer-Verlag.

F. TAKENS (1993). Detecting nonlinearities in stationary time series. J.
Bifurcations and Chaos 3.

R. THOM (1972). Stabilité Structurelle et Morphogénése, Benjamin.

M. VIANA. Strange attractors in saddle-node cycles: prevalence and
globality. Invent. Math., to appear.



